The Mechanical Stratigraphy of Kerendan Field in Upper Kutai Basin: Implication to Field Development with Massive Carbonate Tight Gas Reservoir
Year: 2021
basins:
Proceedings Title : PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION, Forty-Fifth Annual Convention & Exhibition, 1 - 3 September 2021
Understanding of field mechanical stratigraphy in terms of formation behavior due to coupled interaction between formation pressure depletion and state of stresses is crucial to achieving successful field development. These provide technical advantages of having a solid foundation for implementation in advanced well construction and completion strategy, especially in light of emerging and challenging plays related to unconventional reservoirs. This paper describes full-field interaction between formation behavior in 4D Geomechanical analysis of Kerendan Field located in Upper Kutai Basin, Central Kalimantan area on gas-condensate production from massive carbonate tight gas reservoir.
Integrated 1D/3D/4D geomechanics study workflow result has enabled characterization of each mechanical stratigraphy unit, as follow:
● The overburden section is comprised of Miocene deltaic clastic succession which is characterized as “soft formation” with low stiffness (Static Young’s Modulus of 0.5 to 1.8 Mpsi) and low - medium rock strength (UCS of 800 to 2000 psi).
● Reservoir section comprised of Oligocene tight carbonates platform which characterized as “hard formation” with medium stiffness (Static Young’s Modulus of 3.0 to 4.5 Mpsi) and medium rock strength (UCS of 5000 to 6900 psi).
● Underburden section comprised of Eocene mixed-carbonate clastic succession and Pre-Tertiary metasediments which characterized as “very hard formation” with high stiffness (Static Young’s Modulus of 4.5 to 5.0 Mpsi) and medium rock strength (UCS of 6500 to 7900 psi)
The Kerendan field would require implementation of special drilling and stimulation techniques in order to achieve optimum full field development potential owing to its reservoir characteristics. The field’s exhibit a large areal extent and massive tight limestone reservoir with relatively high Young’s Modulus, which is favorable for the utilization of extended reach drill (ERD) / horizontal wells followed with multi-stage acid fracturing stimulation.
3D/4D Geomechanical analysis is essential to assess the drillability and engineering limits of various development scenarios which will be strongly controlled by geomechanical fabric, pre-existing deformation/local discontinuities, prevailing principal stress tensor and stress changes during field production.
Log In as an IPA Member to Download
Publication for Free.