Publications

Geochemistry Analysis and Petroleum System Modeling for the “X” Block, West Natuna Basin

Proceedings Title : Proc. Indon. Petrol. Assoc., 42nd Ann. Conv., 2018

This paper describes geochemistry analysis, hydrocarbon charge and entrapment model for prolific “X” Block in the West Natuna Basin. Even though the area is currently at a mature exploration stage, the behaviour of hydrocarbon distribution in the area is still poorly understood and the link between discovered hydrocarbon and possible kitchens is still unknown. This study is an attempt to understand hydrocarbon expulsion, charging and entrapment in “X” Block to de-risk further exploration efforts. Several localized inverted half-grabens were identified through seismic interpretation. Nearby wells were then selected in evaluating source rock quality and maturity. In order to determine hydrocarbon expulsion model, 1D-3D burial history and thermal maturity models were constructed using integration of source rock and fluids geochemistry, temperature, seismic, and well data. Hydrocarbon charge and entrapment models were then simulated using 3D basin modeling software and calibrated with existing proven accumulation to produce a risked understanding of hydrocarbon distribution in the study area. This study suggests that the most possible source rocks are the Late Eocene and Oligocene shales of Lama Formation and Lower Gabus Formations. Both source rocks are indicated by type I & type III kerogen. Lama source rock was confined in the initial grabens and post mature in deep paleograbens. This study confirmed that charging is derived from four (4) kitchen areas: Anoa, Gajah, Kakap, and Kambing grabens. The oil samples from X” Block indicated lacustrine facies. Rock geochemistry analysis portrayed oil-prone and gas-prone source rock. In general, hydrocarbon was migrated from the southeastern area (Kambing graben) and southwestern area (Gajah graben). Hydrocarbon was later on accumulated in the nearest structural entrapments (anticlines). In the deep grabens (Kakap and Kambing), the hydrocarbon expulsion was starting as early as 37 Ma and 31 Ma, respectively, while in shallow graben (Anoa) the expulsion was starting at 29 Ma. The earliest structural trap commenced at 21 Ma, aligned with the initial compressional regime that was affecting the West Natuna Basin. Notable accumulative erosion in Miocene was nearly 1000 m at inverted structures, by which partly removed regional seal and reduced reservoir effectiveness. Significant yet-to-find hydrocarbon is predicted to be concentrated in the Anoa, Kakap, and Northeast Kambing area.

Log In as an IPA Member to Download Publication for Free.
or
Purchase from AAPG Datapages.