Publications

Redefining Reservoir Architecture of Hydrocarbon-Bearing Ngrayong Formation in Banyu Urip Area:New Insights to Unravel Hidden Potential in East Java Basin

Proceedings Title : PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION, Forty-Fifth Annual Convention & Exhibition, 1 - 3 September 2021

Results of Banyu Urip (BU) carbonate exploration, appraisal and development drillings revealed the existence of hydrocarbon-contained in Serravallian deep-water clastic reservoir on top of the primary BU carbonate reservoir. This clastic reservoir is equivalent to the Ngrayong Formation in East Java Basin which is widely known as a mature exploration target and consists of a wide range of depositional environment from fluvio-deltaic (northern part of the Basin) to basin floor (southern part of the basin) with various reservoir quality. However, after a century of exploration activities in East Java Basin, commercial discoveries in the Ngrayong Formation are still considered insignificant (approximately 330 MMboe) (Mazied et al. 2016). This probably due to complex reservoir architecture posted high uncertainty of its reservoir presence, distribution, and quality as well challenging on their dynamic aspects such as un-known hydrocarbon connectivity, un-even contacts and low-deliverability. This paper will present new insights and the potential of Ngrayong clastic opportunity in BU area based on static and dynamic data including BU wells, newly reprocessed 3D seismic data, conventional core and thin sections, as well as integrated geologic and geophysical analyses. Integration of the available dataset suggest the presence of stacked deep water channels and deep water lobes systems. The distribution of stacked channels and lobes seem to be more predictive and widespread, hence providing a better understanding of its reservoir distribution. Furthermore, well data indicates approximately total of 100m net stacked clastic reservoirs consist of mixed carbonate-clastic materials, and have good reservoir pressure connectivity with the carbonate reservoir underneath. This mixed clastic-carbonate system in Ngrayong Formation is diagenetically-altered, and this diagenesis process plays as an important roles in modifying reservoir quality. Although carbonate cement and diagenetic overprint impose challenging reservoir quality prediction, a dissolution creates better reservoir quality, generates excess permeability and produces high flow reservoir. Detail study of reservoir architecture and diagenesis process are critical to better assess volumetric and development opportunity. These key components will open up new paradigm and essential for successful of Ngrayong Formation exploration in East Java Basin in order to contribute to the country’s energy demand.

Log In as an IPA Member to Download Publication for Free.